Differentiation-specific histone modifications reveal dynamic chromatin interactions and partners for the intestinal transcription factor CDX2.
نویسندگان
چکیده
VIDEO ABSTRACT Cell differentiation requires remodeling of tissue-specific gene loci and activities of key transcriptional regulators, which are recognized for their dominant control over cellular programs. Using epigenomic methods, we characterized enhancer elements specifically modified in differentiating intestinal epithelial cells and found enrichment of transcription factor-binding motifs corresponding to CDX2, a critical regulator of the intestine. Directed investigation revealed surprising lability in CDX2 occupancy of the genome, with redistribution from hundreds of sites occupied only in proliferating cells to thousands of new sites in differentiated cells. Knockout mice confirmed distinct Cdx2 requirements in dividing and mature adult intestinal cells, including responsibility for the active enhancer configuration associated with maturity. Dynamic CDX2 occupancy corresponds with condition-specific gene expression and, importantly, to differential co-occupancy with other tissue-restricted transcription factors, such as GATA6 and HNF4A. These results reveal dynamic, context-specific functions and mechanisms of a prominent transcriptional regulator within a cell lineage.
منابع مشابه
Intestinal master transcription factor CDX2 controls chromatin access for partner transcription factor binding.
Tissue-specific gene expression requires modulation of nucleosomes, allowing transcription factors to occupy cis elements that are accessible only in selected tissues. Master transcription factors control cell-specific genes and define cellular identities, but it is unclear if they possess special abilities to regulate cell-specific chromatin and if such abilities might underlie lineage determi...
متن کاملGenome-wide analysis of CDX2 binding in intestinal epithelial cells (Caco-2).
The CDX2 transcription factor is known to play a crucial role in inhibiting proliferation, promoting differentiation and the expression of intestinal specific genes in intestinal cells. The overall effect of CDX2 in intestinal cells has previously been investigated in conditional knock-out mice, revealing a critical role of CDX2 in the formation of the normal intestinal identity. The identifica...
متن کاملDynamic chromatin accessibility modeled by Markov process of randomly-moving molecules in the 3D genome
Chromatin three-dimensional (3D) structure plays critical roles in gene expression regulation by influencing locus interactions and accessibility of chromatin regions. Here we propose a Markov process model to derive a chromosomal equilibrium distribution of randomly-moving molecules as a functional consequence of spatially organized genome 3D structures. The model calculates steady-state distr...
متن کاملThe effect of aspirin on the interaction of histone 05 and 05-DNA
The linker histones (H1 or H5) which play a key role in the folding of chromatin, are general repressors of gene expression. Nuclei of the mature chicken erythrocytes (and in some mammalian cells) contain both of them. Although the interaction of H5 with DNA is stronger than that of H1, it does not prevent the transcription of some erythroid-specific genes. It has been shown that some modificat...
متن کاملDynamic changes in chromatin states during specification and differentiation of adult intestinal stem cells
Epigenetic mechanisms, including chromatin structure, chromatin dynamics and histone modifications play an important role for maintenance and differentiation of pluripotent embryonic stem cells. However, little is known about the molecular mechanisms of adult stem cell specification and differentiation. Here, we used intestinal stem cells (ISCs) as a model system to reveal the epigenetic change...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental cell
دوره 19 5 شماره
صفحات -
تاریخ انتشار 2010